Strong signatures of positive selection at newly arising genetic variants are well documented in humans1, 2, 3, 4, 5, 6, 7, 8, but this form of selection may not be widespread in recent human evolution9. Because many human traits are highly polygenic and partly determined by common, ancient genetic variation, an alternative model for rapid genetic adaptation has been proposed: weak selection acting on many pre-existing (standing) genetic variants, or polygenic adaptation10, 11, 12. By studying height, a classic polygenic trait, we demonstrate the first human signature of widespread selection on standing variation. We show that frequencies of alleles associated with increased height, both at known loci and genome wide, are systematically elevated in Northern Europeans compared with Southern Europeans (P < 4.3 × 10−4). This pattern mirrors intra-European height differences and is not confounded by ancestry or other ascertainment biases. The systematic frequency differences are consistent with the presence of widespread weak selection (selection coefficients ~10−3–10−5 per allele) rather than genetic drift alone (P < 10−15).Luke Jostins described this research last year:
Europeans differ systematically in their height, and these differences correlate with latitude. The average Italian is 171cm, whereas the average Swede is a full 4cm taller. Are these differences genetic? Have they been under evolutionary selection in recent human history?Michael Turchin gave some pretty convincing answers to these questions, using genetic data from the 129 thousand individuals in the GIANT consortium. He compared the frequencies of alleles that are known to increase height, and found that they are more common in Northern Europe. Interestingly, he found the same relationship for alleles that have weaker evidence for height association, showing that there are still a large number of common height variants hiding in the genome, which are also more frequent in Northern Europe.
Height differences are thus heritable, but have they been under evolutionary selection? Or are these differences merely down to genetic drift? This can also be tested using the GIANT data, which shows significant statistical evidence of selection on height variants in recent history. On top of that, the magnitude of the selection is correlated with the effect size of the height variant, providing strong evidence that these variants are being selected specifically for their impact on height.
This is a textbook example of how an evolutionary study should be done; you show a phenotypic difference exists, that it is heritable, and that it is under selection. This opens the question as to why height has been selected in Northern Europe (or shortness in Southern Europe). Could the same data be used to test specific hypotheses there?
No comments:
Post a Comment